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ABSTRACT 
This paper discusses the inertia tensors of tennis rackets and their influence on the elbow swing torques 
in a forehand motion, the loadings transmitted to the elbow from central and eccentric impacts, and the 
racket acceleration responses from central and eccentric impacts. Inertia tensors of various rackets with 
similar mass and mass center location were determined by an inertia pendulum and were found to vary 
considerably in all three orthogonal directions.  Tennis swing mechanics and impact analyses were 
performed using a computer model comprised of a full-body model of a human, a parametric model of 
the racket, and an impact function.  The swing mechanics analysis of a forehand motion determined that 
inertia values had a moderate linear effect on the pronation-supination elbow torques required to twist the 
racket, and a minor effect on the flexion-extension and valgus-varus torques.  The impact analysis found 
that mass center inertia values had a considerable effect on the transmitted torques for both longitudinal 
and latitudinal eccentric impacts and significantly affected all elbow torque components.  Racket 
acceleration responses to central and eccentric impacts were measured experimentally and found to be 
notably sensitive to impact location and mass center inertia values.   
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INTRODUCTION 
 
An ongoing trend in the tennis equipment industry is 
designing ever larger racket faces without increased 
overall racket weight (Coe, 2000). The results are 
rackets with increased inertia tensor values. 
Changing the inertia tensor of the tennis racket may 
have multiple and interconnected effects since the 
inertia values influence both the tennis player and 
the behavior of the racket. For example, to some 
degree a modified inertia tensor may alter the torque 
necessary to swing the racket, the manner in which 

the racket reacts at impact, and the forces and 
torques transmitted back to the player from impact 
(Brody, 2000). 

While it is understood that changing the racket 
geometry can affect the inertia values of the racket 
and resulting tennis swing torques, transmitted 
torques, and racket behavior, scientific 
investigations to precisely determine these effects 
have been limited. Brody (1979) discussed the 
potential merits of oversized rackets, perimeter 
weighting, and increased racket head inertia on 
racket behavior and shot production. Mitchell et al. 
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(2000) studied the effects of moment of inertia at the 
racket handle on serving velocity and found an 
inverse relationship between racket speed and heel 
inertia. Elliot et al. (1980) found that impact 
vibrations measured at the racket were reduced for 
oversized rackets. Kawazoe and Yoshinari (2000) 
studied the impact shock vibrations at the wrist joint 
for two oversized rackets and determined that the 
lighter racket caused higher shock vibrations. 
Hennig et al. (1992) found that increased racket head 
size reduced arm vibrations as measured by 
accelerometers for off-center impacts, however no 
direct comparisons to racket inertia values were 
presented. Liu (1983) found that the coefficient of 
restitution of the ball/racket impact was a function of 
the ratio of the radius of gyration about the racket 
pivot to the distance of the geometric center of the 
racket head to the pivot thus indirectly correlating 
moment of inertia to COR. 

The importance of the elbow joint in swinging 
the racket is well documented (Bahamonde and 
Knudson, 2003; Elliott et al., 2003). In addition, the 
high incidence of overuse injury to this joint is also 
well known (Priest et al., 1980; Hennig et al., 1992).  
The forces generated by impact between the racket 
and the ball, especially off-center impacts have been 
identified as one of various other factors in the 
development of tennis elbow (Hennig et al., 1992). 
Knudson (1991) states that rackets that minimize the 
effects of off-center impacts should be considered as 
intervention to reduce the risk of tennis elbow.  
Thus, it was decided that the most relevant joint to 
focus on for this study is the elbow, although it was 
recognized that the wrist and shoulder joints also 
deserve similar investigations.   

The purpose of this study was to investigate 
the influence of racket inertia properties on the 
elbow torques during a forehand tennis swing, and 
the feel of impact at the elbow for central and 
eccentric impacts, and the acceleration response of 
the racket to central and eccentric impacts.  
 
METHODS 
 
Inertia properties of tennis rackets  
The inertia properties of a solid body are completely 
characterized by the 3x3 inertia tensor, which is 
defined as: 

 
 

 
 
 
  

The matrix is symmetric yielding six 
independent inertia quantities. The terms on the 

main diagonal (Ixx, Iyy, and Izz) are the moments of 
inertia. The off-diagonal terms (Ixy, Ixz, and Iyz) are 
the cross-products of inertia. Together, the elements 
of the inertia tensor represent the dynamic 
consequences of the arrangement of the mass of a 
solid body, a tennis racket in this case, and are a 
measure of the body’s resistance to changes in 
angular motion. For a body with two planes of 
symmetry, the products of inertia are zero and the 
principal axes of inertia orient with the planes of 
symmetry. For the case of a tennis racket there are 
two planes of symmetry, the plane of the racket face 
(Y-Z plane, see Fig. 1), and the plane perpendicular 
to the face and parallel to the handle (X-Z plane, see 
Figure 1). Thus the inertia tensor for a tennis racket 
reduces to the “diagonalized” principal inertia form: 

 
 
 
 
 

where IGX, IGY, and IGZ are the principal moments of 
inertia of the body, which are computed about the 
principal axes of inertia located at the racket mass center 
(CG).   

 
Figure 1. Racket mass center principal 
coordinate system. 

 
A solid body subjected to an unbalanced 

torque about a principal axis will experience a 
change in the angular motion about that axis that is 
inversely proportional to the corresponding principal 
inertia component. Thus, knowledge of the principal 
inertias of a solid body is useful in evaluating the 
dynamic behavior of the body when subjected to 
unbalanced torques, in this case the swinging 
torques from a player, and the loadings from 
impacting the ball. 

The values of the inertia tensor elements are 
functions of both the location and orientation of the 
coordinate axes to which the tensor is referenced. An 

xxI  xyI  xzI  

xyI  yyI  yzI  

 xzI  yzI  zzI  

IGX 0 0 
0 IGY 0 
0 0 IGZ 
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important inertia location on the racket is at the point 
where the player grips the racket at the handle.  
Using the Parallel Axis Theorem, the inertia tensor 
about a parallel axis at the grip point is the 
following: 

 
IGX + mL2 0 0 

0 IGY + mL2 0 
0 0 IGZ 

 
where m is the mass of the racket and L is the distance 
from the mass center to the grip point. 
 

It is obvious that the racket inertia properties 
in the X and Y directions increase rapidly as one 
moves away from the mass center. This fact 
highlights the importance of the handle length and 
the mass center location to the inertial “feel” of the 
racket to the player.   

A variety of racket configurations of similar 
mass and mass center locations were sought in order 
to obtain realistic racket inertia values in all 
principal directions; to obtain a sense of the range of 
possible inertia values in the principal directions; 
and to determine the relative values of inertia for a 
given racket. Having a wide range of complete and 
realistic racket inertia values allows one to better 
predict the possible range of expected effects of 
inertia on the tennis swing, the additional loadings 
from impact, and the racket acceleration response to 
impacts. Ten rackets were chosen and include a 
junior racket as well as high quality and oversized 
rackets. 

An inertia pendulum was designed to measure 
the mass center location and the three principal 
inertia values of the tennis rackets (Brody, 1985). 
The pendulum was calibrated with standard shaped 
objects and included values above and below the 
expected inertias of the rackets. The calibration 
objects fit the calibration curve with an R2 value of 
0.999682 (coefficient of determination). The device  

 

was accurate to 1.5% and repeatable to 0.5% 
The mass and inertia properties of the rackets 

are given in Table 1. Mass center locations are 
measured from the end of the handle.  In addition, 
the parallel axis theorem was used to determined the 
racket inertia values about a parallel coordinate 
system placed 75mm from the end of the handle. 
These values are given in Table 2.  Table 2 also lists 
the quantity ML2 which represents the additional 
inertia contribution in both the X and Y directions 
by moving the mass center inertia to the handle grip 
point. The Z direction inertia is unchanged at the 
handle relative to the mass center.   

Referring to Table 1, IGX is consistently the 
largest mass center inertia value for all the rackets, 
IGY is slightly smaller than IGX in all cases, and IGZ is 
by far the smallest inertia value. The contribution of 
the handle length to the IGX and IGY values is 
considerable and accounts for the large difference 
between IGX and IGY, and IGZ. Table 1 also reveals 
that while the racket masses and mass center 
locations are not too different among the rackets, the 
inertia values in all three directions vary 
considerably. The greatest relative difference among 
the rackets occurred about the Z-axis. Thus it 
appears from this sample that racket designers can 
successfully manipulate racket inertia values for a 
narrow range of mass and CG locations. Table 2 
reveals that the inertias of the racket at the handle 
grip point are considerably larger about the X and Y 
axes than at the mass center. The additional inertia 
contribution at the handle is the ML2 term which 
accounts for approximately 45 to 60% of the IHX and 
IHY inertia values at the handle. Brody (1985) refers 
to IHY inertia as the “swing weight,” because it is a 
measure of how “heavy” the racket feels when you 
swing it and what the racket’s “hitting mass” is 
when the ball is struck, and the IHX inertia as an 
important resisting quantity when executing “slice” 
or “chop” shots or when serving.   

Table 1. Racket Mass, Mass Center Location, and Principal Inertia Values 
Racket Mass 

(kg) 
CG Loc 

(mm) 
IGX 

(kg·mm-1·s-2) 
IGY 

(kg·mm-1·s-2) 
IGZ 

(kg·mm-1·s-2) 
1 .314 346.6 16104.9 14407.0 987.1 
2 .309 360.6 18270.5 16336.6 885.7 
3 .345 330.4 16624.8 15048.6 1266.7 
4 .318 331.3 16175.4 14445.1 1319.0 
5 .332 326.6 15704.8 14019.0 1186.4 
6 .324 314.6 14612.8 13394.1 1007.3 
7 .315 320.0 12348.9 11227.3 1029.4 
8 .301 305.4 11007.2 9904.7 889.2 
9 .273 283.2 9224.8 7982.8 739.9 

10 .253 272.0 8118.7 7126.6 448.8 
Average .308 319.1 13819.3 12389.2 975.9 
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Table 2. Racket inertia values about the handle grip point. 
Racket IHX 

(kg-mm-s2) 
IHY 

(kg·mm-1·s-2) 
IHZ 

(kg·mm-1·s-2) 
ML2 

(kg·mm-1·s-2) 
1 39138.4 37440.4 987.1 23033  
2 43368.7 41434.7 885.7 25098 
3 39064.5 37488.3 1266.7 22439 
4 36986.9 35256.6 1319.0 20811 
5 36622.5 34936.8 1186.4 20917 
6 33026.8 31808.1 1007.3 18414 
7 29557.9 28436.3 1029.4 17209 
8 26678.2 25575.7 889.2 15671 
9 16905.2 15663.2 739.9 7680 

10 19546.0 18553.9 448.8 11427 
Average 32089.5 30659.4 975.9 18269.9 

 
Computer model 
A full-body model of a human coupled to a 
parametric model of a tennis racket was developed 
to determine racket and arm trajectories, 
player/racket interaction forces and torques, joint 
motions, forces, and torques, and reactions to impact 
(see Figure 2). The model included a spring-damper 
impact function to simulate ball-racket impact and a 
ground surface model to support the model through 
contact with the feet. This modeling approach has 
been used to analyze the golf swing (Nesbit et al., 
1994; Nesbit, 2003a; 2003b), golf equipment 
behavior (Nesbit et al., 1996), and other sport 
biomechanical motions (Nesbit and Ribadeneira, 
2003).   
 

 
Figure 2. Computer model of forehand tennis swing. 
 

The model was built, analyzed, and post-
processed with the aid of the commercial software 
packages ADAMS (Mechanical Dynamics, Inc.) and 
LifeMod humanoid pre-processor (Biomechanics 
Research Group, Inc.). ADAMS is a multi-body 
dynamic analysis program where models are built 
from rigid segments connected with flexible 
elements and/or a variety of joints. Forces and 
motions can be superimposed upon the model.  
ADAMS derives the differential equations of motion 
for the model employing methods of Lagrangian 
dynamics. The equations of motion are solved using 

one of several backward differentiation formula 
(BDF) integrators. The results are output and the 
model is simulated using the ADAMS 
postprocessor. 
 
Humanoid model 
The LifeMod program is a pre-processor of the 
ADAMS software designed to aide in the creation of 
humanoid models from ADAMS modeling 
elements. LifeMod was used to model the player as 
a variable full-body, multi-link, three-dimensional 
humanoid mechanism made up of seventeen rigid 
segments interconnected with joints. The model was 
configured with the following fifteen body 
segments; head, neck, thorax, lumbar, pelvic, upper 
arm (2), forearm (2), thigh (2), lower leg (2), hand 
(2), and foot (2). All segments were geometrically 
defined by their adjacent joints with exceptions of 
the neck (C1-C8), thorax (T1-T12), and lumbar (L1-
L5 and S1-S5) which were defined by the associated 
vertebrae. The segment size, mass and inertia 
properties were determined from gender, age, and 
overall body height and weight using the GeBod 
data base accessible through the ADAMS software. 
The model consisted of the following sixteen joints; 
ankles (2), knees (2), hips (2), lumbar, thoracic, 
neck, shoulders (2), elbows (2), and wrists (2). All 
joints were spherical yielding a maximum of three 
relative angular degrees-of-freedom with the 
exceptions of the knees, elbows, and wrists which 
were modeled as two degree-of-freedom joints 
(bending and twisting for the knees and elbows, 
bending and yawing for the wrists). The motions 
superimposed upon the joints were specified in 
terms of Bryant angles (see below) and their time 
dependent derivatives.   

The body segment reference coordinate 
systems, established when the model is posed in the 
standard anatomical position, places the Z-axis 
pointing downward with the exception of the feet 
which point forward parallel to the long axis of the 
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Figure 3. Impact model forces and racket/ball relative velocity. 

 
foot segment. The X-axis points outward from the 
body, and the Y-axis completes a right-handed 
coordinate system. Joint motions, forces, and torques 
are of the distal body segment coordinate system 
relative to the proximal body segment coordinate 
system. The angular quantities are specified 
according to the relative body (Euler angle) 1-2-3 
Bryant angle convention where alpha motion (α) is 
about the X-axis, beta motion (β) is about the Y’-
axis, and gamma motion (γ) is about the Z’’-axis 
(Kane et al., 1983). The elbow joint is capable of 
flexion-extension (beta motion) and pronation-
supination (gamma motion). The varus-valgus 
reaction torque in the plane formed by upper arm 
and forearm is in the alpha direction. Note that 
positive elbow torques indicate flexion, valgus, and 
pronation. 

 
Ground surface model 
A ground surface model was added to support the 
humanoid model. A standard linear spring-damper 
system was used to represent the contact between 
the feet and the ground, and frictional forces 
provided traction. The initial contact parameters 
were obtained from Scott et al. (1993) and were 
adjusted at solution time to prevent over-stiffening 
the model. The humanoid model was balanced by 
kinematically driving the angular DOF’s of the 
lower torso segment (hips) relative to the global 
coordinate system. To avoid over-constraining the 
model, the linear DOF’s were set free. A 
kinematically driven model is infinitely stiff, 
therefore small joint angle errors can cause one of 
the feet to lose contract with the ground surface.  To 
solve this problem, the Beta motion (flexion-
extension) of one of the ankle joints was 

dynamically driven with a torque control function 
(Nesbit et al., 1994) to give the model compliance.   

 
Racket and impact models 
The tennis racket was modeled as a rigid structure 
with representative mass and inertia properties.  The 
connection between the racket and the hand was 
modeled as perfectly rigid with no damping.  This 
rigid body approach to the modeling of the human 
and racket was similar to the methods of Bahamonde 
and Knudson (2003) and Elliot et al. (2003) in 
studying swing mechanics.  The rigid connection 
will yield the maximum transmitted forces and 
torques from the racket/ball impact.  While the 
tennis literature recognizes the influence and effects 
of grip tightness and arm damping on transmitted 
vibrations (Hennig et al., 1992), no definitive 
conclusions have emerged on how to properly 
interconnect human and racket models at this time.  
Thus the predicted relative effects of inertia on 
transmitted forces and torques at the elbow should 
be given more weight than the absolute effects as 
determined from these computer models. 

The impact model (Eqn. (1)) combines the 
spring rates and damping of the racket strings and 
tennis ball, and is a function of their relative 
deflection (X) and speed (Vrel). From the work of 
Cross (2000), the combined spring rate of the ball 
and racket strings (K) was estimated to be 30   
kN·m-1. From the work of Dignall and Haake (2000), 
the exponent on the deflection was specified as 2 
and the effective combined damping (C) as 
approximately 7.5 Ns·m-1. The resulting impact 
force and racket/ball relative velocity are shown in 
Figure 3. For this case, the function yielded a 
maximum impact force of 600 N, a coefficient of 
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Figure 4. Working volume and stick figure model of recorded tennis swing. 

 
restitution of 0.74, and an impact duration of 0.0041 
seconds. These values agree with Carre et al. (2003) 
whose analytical methods predict a spring rate of 
32.3 kN·m-1 and damping of 8.1 Ns·m-1 for the 
impact duration and coefficient of restitution found 
for this impact model.   
 
 relVCXKForce ** exp +=   (1) 
 
Swing data and joint motions 
Data to kinematically drive the joints of the player 
model were obtained from subject forehand swings. 
A multi-camera motion analysis system tracked 
passive-reflective markers (13 and 19 mm in 
diameter) that were strategically placed upon the 
player and the racket. There were 23 markers placed 
on the player, and three on the racket.  On the player 
the markers were located at the wrists, forearms, 
elbows, shoulders, cervical and lumbar vertebra, 
head, hips, knees, mid lower leg, ankles, and feet.  
All markers were located relative to bony landmarks 
for consistency, and securely attached with two-
sided tape (skin) or Velcro (clothing). Markers were 
attached directly to the skin wherever possible.  
Subjects wore snug-fitting clothing (tank-top and 
bicycle-style shorts), a baseball hat (head marker), 
and shoes of their choice. Marker/joint offsets were 
measured, and virtual joint-center markers were 
located from these data using features provided by 
the data collection software. Reflective tape was 
attached to the tennis ball to determine the precise 
time of impact. Figure 4 shows the camera locations, 
the working volume, global origin, and a stick figure 
representation of the subject swing.    

The three-dimensional marker paths were 
recorded at 200Hz then smoothed and processed to 

yield global body 1-2-3 angular motions of each 
body segment and the racket. The global angular 
motions were transformed into local relative joint 
motions (position angles) by comparing the motions 
of adjacent body segments using processes described 
in Craig (1986). These relative angular motions were 
used to kinematically drive the joints of the player 
model.   

 
Solution of model 
The primary components of the model, the 
humanoid and racket, are rigid and kinematically 
driven via local relative joint position angles 
yielding simultaneous linear equations which results 
in a closed-form solution. However the ground-
surface and the impact force models introduced non-
linearities and time-dependent dynamic responses 
into the system. Thus, the entirety of the model 
represents a forward dynamics or simulation 
problem requiring numerical integration to solve.  
The resulting dynamic equations of motion were 
solved using a Wielenga Stiff Integrator 
(Mechanical Dynamics Inc.). Solution of the model 
yielded a simulation of the swing, player/racket 
interaction forces and torques, joint angular 
velocities and accelerations, joint torques and 
reaction forces, impact forces, and transmitted 
impact loads.   

 
Subject 
One female subject was used to obtain the swing 
data for this study. The subject was a member of the 
Lafayette College tennis team. The subject was 
right-handed, 22 years old, 1.65m tall, and 56.7 kg 
in weight. She had been playing for 15 years, with 
ten of those under the guidance of a coach. The 
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Table 3. Maximum elbow swing torque components before impact. 
Max Elbow Torques (Nm)  

Racket Valgus-Varus Pronation-Supination  Flexion-Extension  
1 30.66 3.78 14.07 
2 31.60 3.48 14.36 
3 30.75 5.75 14.15 
4 29.59 6.07 13.91 
5 29.75 4.83 13.68 
6 28.70 4.19 13.76 
7 28.53 4.42 13.65 
8 27.87 3.56 13.29 
9 26.33 2.91 12.59 

10 27.11 1.72 13.22 
 
subject was free to select any racket from the ten in 
this study without knowing their mass and inertia 
properties. The subject had reflective markers placed 
upon her body and the racket. After practicing for 
several minutes to acclimate to the markers, racket, 
and surroundings, the subject was asked to execute a 
series of closed-stance forehand swings which 
included striking a ball. A swing from the subject 
was self-selected based upon her assessment of the 
stick figure animations, then analysed using the 
computer models described above.   

 
RESULTS AND DISCUSSION 
 
Using the same swing from the subject, the racket 
inertia properties for each of the ten rackets were 
input into the racket model and the entire model 
reanalyzed. The racket mass and mass center 
locations were normalized within the racket model 
to reflect the average values of the rackets (see Table 
1). Using the same mass and CG location for all the 
rackets removed these variables from the analyses, 
thus any difference in swing torque values for the 

rackets was a direct result of their differing inertia 
properties. Table 3 presents the maximum values of 
the elbow swing torque components for the subject 
during the time period between the initiation of the 
forward swing to just before impact. These values 
agree well with Bahamonde and Knudson (2003) 
who report elbow torque profiles for both open and 
square stance forehand tennis swings.   

The elbow torque components were correlated 
to the three mass center inertia values, the three 
inertia values at the handle grip point, and ML2, the 
difference in inertia between the two locations. The 
strongest relationships are shown in Figures 5 and 6.   

Figure 5 illustrates a strong linear relationship 
between the pronation-supination torque in the 
forearm and the value of IGZ. This finding is 
predicted by Newton’s 2nd Law for rotational 
systems. At the time of peak pronation-supination 
torque, the long axis of the forearm is closely 
coincident with the long axis of the racket. In this 
position the primary retarding quantity of the racket 
is IGZ. For the flexion-extension and valgus-varus 
torques, the strongest relationships are with the ML2 
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Figure 5. Maximum elbow pronation-supination torque vs. racket IGZ 
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Max Flex-Exten and Valgus-Varus Torques vs. ML2
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Figure 6. Maximum flexion-extension and valgus-varus torques vs. ML2 

 
contribution to the inertia at the racket handle grip 
point in the X and Y directions (Figure 6). However, 
the actual effects of ML2 on the two torque 
components are fairly insignificant as noted by the 
shallow slopes, small ranges of torque values, and 
high values of the y-intercepts. The relationships 
among the flexion-extension and valgus-varus 
torques with the X and Y inertia values at the racket 
handle are nearly as strong as with the ML2 inertia, 
yet these actual effects are insignificant as well for 
the same reasons. The torques generated and reacted 
in the flexion-extension and valgus-varus directions 
are far more effected by the overall mass and mass 
center location of the racket than its inertia at the 
handle or mass center.   

A limitation of this study is the assumption 
that the subject will swing at the same speed 
regardless of the racket inertia values. This 
assumption was necessary to isolate the various 
effects of racket inertia on the elbow from the effects 
of racket head speed. An analysis of the elbow 
torques in Table 3 indicates that it is a reasonable 
assumption for the flexion-extension and valgus-
varus directions. However, the considerable range of 
the pronation-supination torques implies that the 
twisting velocity of the racket may be affected by 
the inertia values in this direction. Using these 
pronation-supination torque values to redrive the 
model kinetically would verify that the twisting 
velocities would be a function of racket inertia.  

 
Figure 7. Central and eccentric impact positions. 
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Elbow Valgus-Varus Torque Magnification vs. IGY
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Figure 8. Valgus-varus torque magnification vs. IGY for longitudinally displaced impacts. 

 
However, this type of analysis ignores the feedback 
effects of the subject in attempting to maintain a 
kinematically consistent swing regardless of racket 
inertia properties. The computer modeling approach 
cannot presently resolve this issue, thus the results 
presented in this paper must be tempered by this 
limitation of the model.  
 
Impact analysis: Computer results 
Several investigators have shown that eccentric 
impacts increase the impact reaction loading to the 
player (Elliot, 1982: Henning, et al., 1992; Kawazoe 

and Yoshinari, 2000; Knudson, 1991). Inferences to 
the effects of racket inertia via increased head size 
on reducing this transmitted impact force have been 
made by Henning, et al. (1992) and Knudson (1991; 
2004), yet no study has quantified the relationships 
of racket inertia properties on the transmitted 
loadings. Thus the computer model with the impact 
force function added was used to study the effects of 
racket inertia properties on the transmitted forces 
from impact on the elbow. Central impact as well as 
laterally and vertically displaced eccentric impacts 
were investigated (Figure 7). For this study, central 
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Figure 9. Flexion-extension torque magnification vs. IGY for longitudinally displaced impacts. 
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Elbow Pronation-Supination Torque Magnification vs IGZ
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Figure 10. Pronation-supination torque magnification vs. IGZ for vertically displaced impacts. 

 
impact is defined as impact at the geometric center 
of the racket face. The nine impact locations shown 
in Figure 7 were applied to each of the ten rackets 
subjected to the same subject swing. The racket 
mass and mass center locations were normalized to 
the average values as before. In addition, the 
distance from the grip point to the geometric center 
of the racket face was normalized for all the rackets. 

The peak elbow torques in each of the 
component directions occurring just after impact 
were recorded for the various impact locations. 
These elbow torque components resulting from the 
transmitted impact loadings (Timpact) were compared 
to the maximum pre-impact swing torque 
components (Tswing), and an impact magnification 
factor calculated with the following equation: 

 

100*
swing

swingimpact

T
TT

MF
−

=   (2) 

 
The elbow torque magnification factors were 

then correlated to the racket inertia properties at the 
mass center and the handle grip point. The strongest 
relationships are shown in Figures 8 through 10. 
These figures illustrate the relationships among 
specific racket inertia properties and related 
component torque magnification factors for 
particular directions of eccentric impacts. Each line 
in the figures represents a specific impact location 
on the racket face.  Also included on each figure are 
2nd order polynomial curve fits associated with each 
impact location listed in the same vertical order as 
the data curves. There is general agreement with 

Kawazoe and Yoshinari (2000) regarding the trends 
of the transmitted impulse magnitudes at the elbow 
and the location of the impact, as well as the 
diminishing effects of increased racket size on 
transmitted impulses (for two rackets only however).    

Figure 8 illustrates the valgus-varus torque 
magnification factor versus the mass center inertia in 
the Y-direction for longitudinally displaced impacts.  
Longitudinally displaced impacts have the potential 
to cause the largest absolute increase in elbow 
torque (45 N-m maximum for the valgus-varus 
torque component). This effect can be diminished by 
increasing the IGY value of the racket.  As shown by 
the figure, there is a 2nd order inverse relationship 
between IGY and the transmitted valgus-varus torque 
at the elbow for longitudinally displaced eccentric 
impacts.  Impacts outside the geometric center of the 
racket face have a greater effect on the transmitted 
torques than inside the face center. This result may 
be due to the shortening of the moment arm from the 
impact location to the racket mass center as well as 
moving nearer to the center of percussion (Elliot, 
1982).   

Figure 9 illustrates the flexion-extension 
torque magnification factor versus the mass center 
inertia in the Y-direction for longitudinally displaced 
impacts.  Longitudinally displaced impacts also have 
the potential to cause large increases in elbow 
flexion-extension torque. This effect is smaller both 
in absolute value (18.9 Nm maximum) and relative 
value (43% maximum) than for valgus-varus 
torques. Similarly, this effect can be diminished by 
increasing the IGY value of the racket. As shown by 
the figure, there is a nearly inverse linear 
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relationship between IGY and the transmitted flexion-
extension torque at the elbow for longitudinally 
displaced eccentric impacts. Impacts outside the 
geometric center of the racket face also have a 
greater effect on the transmitted torques than inside 
the face center for the same reasons as described 
above.   

Figure 10 illustrates the pronation-supination 
torque magnification factor versus the mass center 
inertia in the Z-direction for vertically displaced 
impacts. Vertically displaced impacts can cause the 
largest relative increase in elbow torque (238% 
maximum for the pronation-supination torque 
component). This is also the type of eccentric impact 
where racket inertia properties have the greatest 
effect in diminishing the transmitted torque 
magnification potential. This finding agrees with 
discussions by Brody (1985). As shown by the 
figure, there is a strong 2nd order inverse relationship 
between IGZ and the transmitted pronation-
supination torque at the elbow for vertically 
displaced eccentric impacts. Impacts above the 
geometric center of the racket face have a slightly 
greater effect on the transmitted torques than below 
the face center a finding supported by Knudson 
(1991). This result is due to the sign on the swing 
pronation-supination torque component which is 
opposite for impacts above the face center, and the 
same for impacts below the face center. When 
interpreting Figure 10, one must keep in mind the 
relatively small values of swing pronation-
supination torque (Table 3), and the strong linear 
relationship between the swing pronation-supination 
torque and IGZ (Figure 5).   

The results of the computer analyses predict 
that racket inertia properties appreciably affect the 
transmitted impact torques at the elbow. The rigid 
nature of the computer model and the invariantly 
driven kinematic nature of the joints serve to 
overestimate the importance of racket inertia in 
diminishing the transmitted torques. The model 
lacks soft tissue elasticity and damping that would 
serve to absorb and dissipate a portion of the impact 
energy. Thus the energy of impact is absorbed 
(conservatively) and released by the mass and inertia 
elements of the model instead of being distributed 
among the elastic and dissipative elements as well. 
The trends predicted by the model are generally 
supported by Newton’s Laws for a rigid system. The 
polynomial relationships in the figures seem to 
suggest some sort of coupling effect among the mass 
and inertia properties, elbow kinematics, and/or 
racket trajectory since Newton’s Laws would have 
predicted more linear relationships for one degree-
of-freedom motion. This observation is supported in 
the experimental studies discussed below.  

Impact analysis: Experimental results 
The impact responses of each racket to central and 
eccentric impacts were evaluated experimentally 
(see Figure 11). The rackets were clamped in a 
cantilever manner at the handle grip point and 
impacted by a 67.15 gram steel ball dropped from a 
height of 762 mm at the various locations indicated 
by Figure 7. The distance from the center of the 
racket faces to the cantilever clamping point was 
normalized for all rackets. However the 
interpretations of the results must be tempered by 
the small but important differences in string tension, 
frame stiffness, mass, and CG location of the 
rackets. A uni-axial accelerometer (Omega Acc 
787A-0107) was mounted to the frame of the racket 
at the top for longitudinally displaced impacts, and 
at the side for vertically displaced impacts. The 
accelerometer output was recorded and displayed by 
a Tektronix TDS 320 oscilloscope.  
 

 
Figure 11. Impact testing apparatus. 

 
Each impact location for each racket was 

tested five times then averaged. The test 
repeatability was within 10% for all cases. The peak 
acceleration values were linearly correlated to IGY 
for longitudinally displaced impacts (Figure 12) and 
IGZ for vertically displaced impacts (Figure 13).  
Each line in the figures represents a specific impact 
location on the racket face.  It was only necessary to 
test one side of the racket face for vertically 
displaced impacts because of symmetry. Also 
included on each figure is the R2 value for each 
impact location listed in the same vertical order as 
the data curves.   

Figure 12 illustrates the linear relationship 
between impact induced accelerations measured at 
the top edge of the racket frame versus IGY for 
longitudinally displaced impacts. The magnitude of 
the accelerations are strongly dependent upon 
impact location and increase as the impact point 
moves  laterally   away   from   the  mass center.  As  
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Figure 12. Measured peak acceleration vs. IGY for longitudinally displaced impacts. 

 
expected however, this effect is inversely related to 
the IGY value of the racket which serves to reduce the 
accelerations by nearly a factor of two between the 
extreme values of IGY for all impact locations.     

Figure 13 shows the linear relationship 
between impact induced accelerations measured at 
the side edge of the racket frame versus IGZ for 
vertically displaced impacts. The magnitude of the 
accelerations are also strongly dependent upon 
impact location and increase rapidly as the impact 
point moves vertically away from the mass center. 
Again, this effect is inversely related to the IGZ value 

of the racket. It appears from the data that  IGZ 
effects the accelerations by nearly a factor of four 
between the extreme values of IGZ for all impact 
locations. However, there is a coupling of racket 
twisting and bending responses at this accelerometer 
location which may cause the IGY value of the 
rackets to effect these results thus exaggerating the 
effects of IGZ.  

It is clear from the results of these experiments 
that racket inertia properties affect the impact 
vibratory response of the rackets. These findings are 
supported  by  Elliot  et al. (1980). However,  the net  
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Figure 13. Measured peak acceleration vs. IGZ for vertically displaced impacts. 
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effects of these experimental findings on the elbow 
are uncertain. As stated by Knudson (2004), the 
small size of impact induced frame vibration forces, 
their limited energy, and their quick damping by 
hand forces suggests that vibration is not a major 
cause of tennis elbow. The works of Hennig et al. 
(1992), Kawazoe and Yoshinari (2000), and Elliot 
(1982) taken together demonstrate that impact 
induced vibrations at the racket are diminished 
substantially as they propagate from the racket frame 
through the hand, wrist, and forearm before reaching 
the elbow. It is also not clear from the literature how 
these impact vibrations are related to the transmitted 
impact loadings, sometimes referred to as impulse 
loadings, determined by the computer model. 
Knudson (2004) separates the effects of the impact 
vibratory response and the impact impulse response 
relative to elbow impact loadings and states that it is 
the large impulse forces that creates the recoil of the 
racket which rapidly stretches the muscles of the 
forearm and that off-center impacts increase impulse 
forces. A further refined computer model containing 
a flexible racket frame, variable grip pressure, and 
anatomical damping may serve to clarify these 
issues. 

 
CONCLUSION 

 
Racket mass property measurements using an inertia 
pendulum found that inertia tensors of various 
rackets with similar mass and mass center location 
can vary considerably in all three orthogonal 
directions. Quantifying how these wide ranging 
inertia values affect the elbow swing torques, and 
the impact induced transmitted torques at the elbow 
for a forehand motion were the objectives of this 
work. Tennis swing mechanics and impact analyses 
were performed using a computer model comprised 
of a full-body model of a human, a parametric model 
of the racket, and an impact function. The stiffness 
of the model coupled with the invariant 
kinematically driven motion of the model joints may 
have overestimated the absolute results predicted by 
the model, however there is confidence that the 
trends found are reasonable. The swing mechanics 
analysis at the elbow determined that the inertia 
values about the long axis of the racket significantly 
influenced the pronation-supination torque. Little 
other effect on elbow swing torque form racket 
inertia were found. The impact analyses found that 
mass center inertia values had a considerable effect 
on the transmitted torques for both longitudinal and 
latitudinal eccentric impacts and significantly 
affected all elbow torque components. Racket 
acceleration responses to central and eccentric 
impacts were measured experimentally and found to 

be notably sensitive to impact location and mass 
center inertia values. However, the net effects of 
these experimental findings on the elbow are 
uncertain because of anatomical damping and grip 
pressure effects which serve to greatly diminish 
these vibrations at the elbow. 

 
ACKNOWLEDGEMENTS 
 
Funding for this project was provided by a grant 
from the National Science Foundation. 
 
REFERENCES  
 
Bahamonde, R.E. and Knudson, D. (2003) Kinetics of the 

upper extremity in the open and square stance 
tennis forehand. Journal of Science and Medicine 
in Sport 6, 88-101. 

Brody, H. (1979) Physics of the tennis racket. American 
Journal of Physics 47(6), 482-487. 

Brody, H. (1985) The moment of inertia of the tennis 
racket. The Physics Teacher 23, 213-216. 

Brody, H. (2000) An overview of racket technology.  In: 
Tennis Science and Technology. Eds: Haake, S.J. 
and Coe, A. Blackwell Science Ltd, London, 
England.  43-48. 

Carre, M.J., Goodwill, S.R. and Haake, S.J. (2003) The 
dynamic characteristics of tennis balls with tennis 
rackets. Journal of Sports Sciences 21, 839-851. 

Coe, A. (2000) The balance between technology and 
tradition in tennis. In: Tennis Science and 
Technology. Eds: Haake, S.J. and Coe, A. 
Blackwell Science Ltd, London, England.   3-40. 

Craig, J.J. (1986) Introduction to robotics: mechanics & 
control. Reading, Massachusetts: Addison-Wesley 
Publishing Co. 

Cross, R. (2000) Dynamic testing of tennis balls. In: 
Tennis Science and Technology. Eds: Haake, S.J. 
and Coe, A. Blackwell Science Ltd, London, 
England.  175-182. 

Dignall, R.J. and Haake, S.J. (2000) Analytical modeling 
of the impact of tennis balls on court surfaces. In: 
Tennis Science and Technology. Eds: Haake, S.J. 
and Coe, A. Blackwell Science Ltd, London, 
England.  155-162. 

Elliot, B., Blanksby, B. and Ellis, R. (1980) Vibration and 
rebound velocity characteristics of conventional 
and oversized tennis rackets. Research Quarterly 
for Exercise and Sport 51, 608-615. 

Elliot, B. (1982) Tennis: the influence of grip tightness on 
reaction impulse and rebound velocity. Medicine 
and Science in Sports and Exercise 14, 348-352. 

Elliott, B., Fleisig, G., Nicholls and Escamilia, R. (2003) 
Technique effects on upper limb loading in the 
tennis serve. Journal of Science and Medicine in 
Sport  6, 76-87. 

Hennig, E.M., Rosenbaum, D. and Milani, T.L. (1992) 
Transfer of tennis racket vibrations onto the human 
forearm. Medicine and Science in Sports and 
Exercise 24, 1134-1140. 



Tennis biomechanics 
 

 

317

Kane, T.R., Likins, P.W. and Levinson, D.A. (1983) 
Spacecraft dynamics. New York: McGraw-Hill Co. 

Kawazoe, Y. and Yoshinari, K. (2000) Prediction of the 
impact shock vibrations of the player’s wrist joint: 
comparison between two super large sized rackets 
with different frame mass distribution. In: Tennis 
Science and Technology. Eds: Haake, S.J. and Coe, 
A. Blackwell Science Ltd, London, England. 91-
99. 

Knudson, D. (1991) Factors affecting force loading on the 
hand in the tennis forehand. The Journal of Sports 
Medicine and Physical Fitness 31, 527-531. 

Knudson, D. (2004) What happens at impact and why it 
can hurt. Coaches Information Service Website. 
Available from URL: http://www.coachesinfo.com.   

Liu, K.Y. (1983) Mechanical analysis of racket and ball 
during impact. Medicine and Science in Sports and 
Exercise 15, 388-392. 

Mitchell, S.R., Jones, R. and Kotze, J. (2000) The 
influence of racket moment of inertia during the 
tennis serve: 3-dimensional analysis. In: Tennis 
Science and Technology. Eds: Haake, S.J. and Coe, 
A. Blackwell Science Ltd, London, England. 57-
65. 

Nesbit, S.M., Cole, J.S., Hartzell, T.A., Oglesby, K.A. 
and Radich, A.F. (1994) Dynamic model and 
computer simulation of a golf swing. Proceedings 
of the 1994 World Scientific Congress of Golf, St. 
Andrews, Scotland. Eds: Cochran, A..J. and 
Farrally, M.R. 71-76. 

Nesbit, S.M., Hartzell, T.A., Nalevanko, J.C., Starr, R. 
M., White, M.G., Anderson, J.R., and Gerlacki, 
J.N. (1996) A discussion of iron golf club head 
inertia tensors and their effects on the golfer.  
Journal of Applied Biomechanics 12, 449-469. 

Nesbit, S.M. (2003a) 3-D mechanics of the wrist during 
the golf swing. Proceedings of the American 
College of Sports Medicine Annual Conference, 
San Francisco, CA. Book of abstract. 307. 

Nesbit, S.M. (2003b) Work and power analysis of the golf 
swing.  Proceedings of the 2003 ASME Annual 
Bioengineering Conference, Miami, FL. Book of 
abstract. 199. 

Nesbit, S.M. and Ribadeneira, M.X. (2003) Sport 
biomechanical analysis using full-body computer 
models. Proceedings of the 2003 IASTED 
International Conference on Modeling and 
Simulation, Palm Springs, CA. Book of abstract. 
252-257. 

Priest, J.D., Braden, V. and Gerberish, S.G. (1980) The 
elbow and tennis, part 1: an analysis of players 
with and without pain. Physician and Sports 
Medicine 8, 80-91. 

Scott, S. and Winter, D., (1993) Biomechanical model of 
the human foot: kinematics and kinetics during the 
stance phase of walking. Journal of Biomechanics 
26, 1091-1104. 

 
 
 
 

AUTHORS BIOGRAPHY 
Steven NESBIT  
Employment 
Associate Professor and Head, 
Department of Mechanical 
Engineering, Lafayette College, 
Easton, PA, USA. 
Degree 
PhD, PE , MS, BS 
Research interests 
Sports biomechanics, mechanisms, 
computer modelling. 
E-mail: nesbits@lafayette.edu 

 Michael ELZINGA 
Employment 
Mechanical engineering student 
Degree 
BS ‘07 
Research interests 
Bioengineering 
E-mail: elzingam@lafayette.edu 

 Catherine  HERCHENRODER 
Employment 
Mechanical engineer 
Degree 
BS 
Research interests 
Mechanical design 
E-mail: herchenc@lafayette.edu 

Monika SERRANO 
Employment 
Mechanical engineer. 
Degree 
BS 
Research interests 
Sports biomechanics. 
E-mail: sesamı82@hotmail.com 

 
 

KEY POINTS 
 
• Tennis biomechanics. 
• Racket inertia tensor. 
• Impact analysis. 
• Full-body computer model. 
 

 
 Steven M. Nesbit, PhD, PE 

Department of Mechanical Engineering, Lafayette 
College, Easton, PA, USA. 
 
 


